






our measurements show that the flow field has a small amplitude,
it is plausible that bacterial cell–surface scattering events could be
described instead by nearly straight-line swimming interrupted by
collisions with the wall that lead to alignment with the surface due
to near-field lubrication and/or steric forces during the collision
(28). Our experimental results establish the key microscopic
parameters required for a systematic investigation of whether
long-range hydrodynamic interactions are relevant to bacteria–
surface scattering.

As a first step in our analysis, we performed numerical scatter-
ing studies by simulating the deterministic equations of motion
for an E. coli-like pusher force dipole swimmer in the presence
of an infinite no-slip surface. The equations of motion of the
swimmer position x and unit orientation vector d are simply
those used above (Eqs. 2 and 3) except that now u, � , and E
are quantities arising from the hydrodynamic image system in
the wall (exact expressions for these quantities are given in the
SI Text). By restricting ourselves to simulations of the determi-
nistic dynamics at this stage, we overestimate the relevance of
hydrodynamic long-range interactions between the swimmer and
the wall, because rotational diffusion of the swimming direction
further diminishes hydrodynamic effects. However, even without
rotational diffusion our simulations show that long-range interac-
tions of swimmers with the wall have little effect on the swimming
dynamics (Fig. 2). The trajectories of force dipole swimmers that
swim toward the wall from different initial angles θ0 are depicted
in Fig. 2A. The initial distance was chosen such that the swimmer
would reach the wall plane (y ¼ 0) after 1 s if hydrodynamic
interactions were absent. Each simulation is stopped when a
volume around the swimmer (a bacterial shape of length 3 μm
and diameter 0.8 μm) crosses the wall. Fig. 2B displays the impact
angle θhit as a function of the initial angle θ0, illustrating that the
difference between incidence and collision angles is small unless
the swimmer already has a small angle of incidence. These simu-
lations indicate that hydrodynamic long-range interactions are
not likely to play an important role in cell–surface scattering
for E. coli. Because the swimming parameters are similar for
many bacterial species, we again expect this result to apply more
generally.

Trapping by Surfaces. When E. coli swim very close to a surface
(approximately 1–3 μm), we observed that individual bacteria
spend an average of 64 s (standard error 4 s) next to the wall
(within the focal plane). Effective trapping by electrostatic attrac-

tion is unlikely, because both the E. coli outer cell wall and the
chamber walls (bovine serum albumin coated onto PDMS) (48)
are negatively charged in our liquid medium (we observed simi-
larly long residence times on simple glass surfaces). However, the
surprisingly long residence times could be caused by the suppres-
sion of rotational diffusion due to geometric constraints on the
orientation of the cell body and flagella near a surface. Although
we showed in the previous section that hydrodynamics has a very
small effect on the swimming direction before collisions with
the surface, hydrodynamic attraction by the surface (27) could
contribute to the observed trapping periods when a bacterium
is already very close to the surface. Considering only hydrody-
namic attraction counteracted by rotational diffusion, we now
derive approximate expressions for the mean escape time te and
escape height above the surface he, by mapping the underlying
escape process onto a Kramers problem (49, 50) for the noise-
induced escape over a potential barrier. The main arguments
and implications are summarized below, while a detailed deriva-
tion is given in the SI Text.

We again approximate the E. coli flow field by the dipole
model, because a force dipole placed close to a wall accurately
captures the measured flow field parallel to the surface (see
Fig. 1 E–H). Thus, Eq. 1 is modified to account for the presence
of the wall (31), as discussed in the SI Text, and near-field hydro-
dynamic lubrication effects are neglected. A bacterium is able
to escape from the surface, if its swimming velocity component
perpendicular to the surface, V 0 sin θ, exceeds the attraction from
its hydrodynamic image (see SI Text), which yields the defining
relation for the escape angle θe,

sin θe ¼ Λ½1–3ðsin θeÞ2�; Λ ¼ 3A
8h2V 0

: [8]

For E. coli swimming at distances h > 1.5 μm from the wall, the
escape angles are small, θeðhÞ < 11° ≪ 1 rad so that linearization
of Eq. 8 is a good approximation, giving θe ≃ Λ.

After colliding with the wall, a bacterium may have a small
positive angle θ < θe with the surface. The equation of motion
for θ can then be rewritten as a Langevin equation (49) in terms
of the derivative of an effective “potential” UðθÞ, and a diffusion
term with Gaussian white noise ξðtÞ,

_θ ¼ −
dU
dθ

þ ð2D�
r Þ1∕2ξðtÞ; UðθÞ≃ θ2

2κ
; [9]

where the approximation θ ≪ 1 reduces UðθÞ to a harmonic
potential, yielding a time scale κ ¼ 16 h3∕ð9AÞ that characterizes
hydrodynamic realignment.D�

r is the rotational diffusion constant
close to the surface in the direction perpendicular to the surface,
which is expected to be smaller than our measured value Dr ¼
0.057 rad2∕s far from boundaries, due to geometric constraints
on the bacterial orientation near a surface. The generic form
of this Langevin equation means that finding the residence time
for a bacterium near a wall is a Kramers problem (49, 50) for the
escape over a barrier ΔU. Because the organism can escape if
θ > θe, we have ΔU ¼ UðθeÞ.

By considering the height at whichΔU ¼ D�
r—i.e., the distance

at which the hydrodynamic torque barrier is comparable to
the diffusion “temperature”—we can obtain an expression for the
escape height

he ¼
1

2

�
81

16

A3

D�
r V 2

0

�
1∕7

: [10]

Using our measured values for E. coli, we find he ¼ 1.7 μm ×
ðDr∕D�

r Þ1∕7, illustrating that hydrodynamics is practially negligible
if E. coli are more than a cell length away from the wall.

Fig. 2. Simulated dynamics of an E. coli-like force dipole swimmer near a
wall. (A) Deterministic swimming trajectories towards a wall at y ¼ 0, numeri-
cally simulated from Eqs. 2 and 3, where u, � , and E are due to the hydro-
dynamic image system. Simulations used a time step Δt ¼ 10−5 s and the
experimentally determined parameters A ¼ 31.8 μm3∕s, V0 ¼ 22 μm∕s and
Γ ¼ 0.88 for the force dipole swimmer. The initial distance is chosen such that
the swimmer would reach the wall after 1 s if hydrodynamic interactions
were not present. (B) Incidence angle θ0 vs. collision angle θhit with the wall
for the trajectories in A, using the same symbols and colors. The dotted line
indicates θhit ¼ θ0. Both panels illustrate that hydrodynamic long-range inter-
actions can be regarded as small perturbations for typical wall scattering
events of E. coli.
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As long as the torque exerted by the hydrodynamic image is
small (ΔU ≪ D�

r ) the typical escape time is set by the rotational
diffusion time scale θ2e∕D�

r . For high barriers ΔU ≫ D�
r [in prac-

tice, ΔU > 3D�
r often suffices, yielding h≲ 1.5 × ðDr∕D�

r Þ1∕7 μm],
transition state theory (49) implies that the mean escape time is
modified by an Arrhenius-Kramers factor, so that approximately

teðhÞ ≈
�
θ2e
D�

r

�
exp

�
ΔU
D�

r

�
: [11]

Using the quadratic approximation for ΔU, and Eq. 10 to express
D�

r in terms of he, we find that te ∝ expðhe∕hÞ7. This dramatic
scaling arises from the fact that the dipole model overestimates
the flow field close to the bacterium but generally hints at the
possibility of a strong, hydrodynamically induced increase of te
when the cells get closer to the surface. We may also evaluate
Eq. 11 at a height h ¼ 1.5 μm, where both the Arrhenius–
Kramers factor and the approximation θeðhÞ ≪ 1 are valid, to
give

te ≈ 0.78 s ×
�
Dr

D�
r

�
exp

�
1.99 ×

�
Dr

D�
r

��
: [12]

The latter estimate suggests that hydrodynamic effects can pos-
sibly explain the experimentally observed long residence times
near a wall, even for values of Dr∕D�

r that are only moderately
larger than 1. It is, however, important to note that this expres-
sion for te presents an upper bound, because the dipole model
overestimates the actual flow field at distances <6 μm from the
bacterium (Fig. 1H), even though the model still correctly cap-
tures the flow topology.

The considerations above show that hydrodynamics is negligi-
ble if a bacterium is more than a body length away from the wall
but that hydrodynamic effects may contribute to the experimen-
tally observed long residence times of bacteria close to no-slip
surfaces. A more detailed understanding of the escape problem
remains an important future challenge, requiring new methods
for measuring D�

r and further theoretical studies of the near-field
interactions between bacteria, their flagella, and surfaces. How-
ever, even if a more accurate description of the hydrodynamics
should become available in the future, one can still expect the
mean escape time to follow an Arrhenius–Kramers law (as in
Eq. 11) with a suitably adapted effective potential U and addi-
tional prefactors that account for the curvature at the potential
barrier (49).

Conclusions
We have presented direct measurements of the flow field gener-
ated by individual freely swimming bacteria, both in bulk fluid
and close to a solid surface. For distances ≳6 μm, the experimen-
tally measured flow field is well-approximated by a force dipole
model; at smaller distances the dipole model overestimates the
flow. Generally, the flow field of E. coli differs markedly from
those created by higher microorganisms, such as Chlamydomonas
(37, 38) and Volvox (37). With regard to the future classification
of flow fields of microorganisms, a decomposition in terms of
vector spherical harmonics can provide a useful systematic frame-
work, similar to the classification of the electronic orbital struc-
tures in atoms or molecules.

Theories of collective behavior in bacterial suspensions iden-
tify as a fundamental process the pairwise interaction of bacteria,
often assumed to be dominated by long-range fluid flows estab-
lished by the action of swimming (25). Our analysis suggests that
noise, due to orientational Brownian motion and intrinsic swim-
ming stochasticity, drowns out hydrodynamic effects between two
bacteria beyond a surprisingly small length scale of a few microns.
This implies that hydrodynamic effects will be relevant only in
sufficiently dense bacterial suspensions. However, under such

conditions, the flow structure close to the bacterial body and con-
tact interactions (e.g., flagellar bundling, steric repulsion) will
be more important than the asymptotic long-range details of
individual microswimmer flow fields.

Insights into the biochemical and physical interactions be-
tween bacteria and surfaces are crucial for understanding the
dynamics of biofilm formation, the emergence of collective bac-
terial behavior in boundary layers, and, thus, more generally
the evolution from unicellular to multicellular, cooperative forms
of life. Our results suggest that long-range hydrodynamic effects
play a negligible role in the scattering of E. coli with surfaces
before collisions. However, hydrodynamic effects can, at least
partially, account for the observed trapping of bacteria within
a few microns of the surface. The analysis presented herein lends
support to the hypothesis (51) that turbulent swarming patterns
in bacterial films arise primarily due to steric repulsion and other
near-field interactions.

Our experimental and theoretical results favor collision-
dominated models (28–30) for the accumulation of bacteria at
surfaces over models based on long-range hydrodynamics (27).
To obtain a more complete dynamical picture of biofilm forma-
tion, future efforts should focus on developing more precise
measurement methods and advanced models that include lubri-
cation effects and biochemical bacteria–surface interactions.
While our combination of measurements, simulations, and the-
ory shows that long-range physical interactions are negligible for
bacterial cell–surface scattering, fluid-mediated coupling could
become important for organisms swimming against or in contact
with a surface, because the organism is then no longer force-free,
resulting in a substantially longer range of hydrodynamic inter-
actions (47, 52).

However, the main implication of the present study is that
short-range forces and noise are likely to dominate the interac-
tions between swimming bacteria, so that collective motion in
bacterial suspensions, thin films (4, 53), and thin wetting layers
(54) relates closely to that seen in driven granular systems (55),
assemblages of biofilaments (56), and animal flocks (57, 58).
This suggests that many of the principles that determine flocking
and self-organization in higher animals should also govern the
collective motion of the smallest organisms.

Materials and Methods
A detailed description of the mathematical models is provided in the SI Text.
The experiments are summarized below.

Culture Conditions. We used E. coli strain HCB437 carrying the plasmid pEGFP
(Clontech, BD Biosciences), kindly supplied by Douglas B. Weibel (University
of Wisconsin-Madison) and Howard C. Berg (Harvard University). Cells were
streaked on 1.5% agar plates containing T-broth (1% tryptone, 0.5% NaCl)
and 100 μg∕mL ampicillin. A single-colony isolate from an overnight plate
was used to innoculate 10 mL of T-broth containing ampicillin and 0.1 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma), which was then grown
for 7 h on a rotary shaker (200 rpm) at 33 °C. This culture was diluted 1∶1with
fresh T-broth containing ampicillin and IPTG as above, 0.2% bovine serum
albumin, and 0.2 μm fluorescent microspheres (505∕515, F8811, Invitrogen)
at concentration 9 × 109 beads∕mL. This bacterial suspension (approximately
1.6 × 107 cells∕mL) was loaded into a polydimethylsiloxane (PDMS) microflui-
dic device consisting of cylindrical measurement chambers (height 100 μm,
radius 750 μm) connected by thin channels. After filling the device, it was
sealed to reduce background fluid motion.

Measurement of the Flow Field. Using a Zeiss Axiovert inverted microscope
with a 40× oil objective (NA 1.3), we simultaneously imaged bacteria and
microspheres under fluorescence conditions at 40 fps (Pike, Allied Vision
Technologies) and at a temperature of 24� 1 °C. To measure the flow field
far from walls, we focused on a plane 50 μm inside the chamber to minimize
surface effects. To measure the flow field close to a no-slip surface, we
focused on a plane 2 μm below the top surface of the sample chamber.
Each movie was analyzed with custom Matlab software that precisely
tracked bacteria by fitting an ellipsoidal two-dimensional Gaussian shape.
For each cell swimming along the focal plane for >1.5 s, we collected the

10944 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1019079108 Drescher et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019079108/-/DCSupplemental/pnas.1019079108_SI.pdf?targetid=STXT


instantaneous velocity of all fluorescent tracers up to a distance of 75 μm,
using standard particle tracking algorithms. The resulting approximately
5 × 109 tracer velocity vectors were binned into a 0.63 μm square grid (shown
in Fig. 1A and E). The mean of the well-resolved Gaussian distribution in each
bin was taken as a local measure of the flow field. To measure the mean
residence time of bacteria near a surface, we used the movies that were
recorded for measuring the flow field near the wall.

Measurement of the Rotational Diffusion. From the tracks of E. coli that swam
in the focal plane for >1.5 s, at a distance of 50 μm from the top and bottom
surfaces, we determined an average swimming direction at time t by using
the direction between the bacterial positions at t − 0.05 s and t þ 0.05 s.

Computing the change in average swimming direction Δϕ revealed diffusive
scaling, so that we obtained Dr from the equation for two-dimensional or-
ientational diffusion, hjΔϕj2i ¼ 2DrΔt, over a time interval Δt. We measured
Dr for Chlamydomonas with the same procedure, using cell-tracking data
described earlier (37).
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SI Text
Hydrodynamics vs. Noise in Cell–Cell Scattering. Guided by our ex-
perimental results for Escherichia coli, we would like to estimate
the relative importance of long-range hydrodynamics in cell–
cell and cell–surface interactions. To this end, we compare the
magnitude of hydrodynamic effects with orientational diffusion
due to external noise and intrinsic variability in the bacterial
swimming mechanism. To model the hydrodynamic interactions,
we use a force dipole approximation to the experimentally deter-
mined flow field, as discussed in the main text. Rotational diffu-
sion is quantified by the measured constant Dr ¼ 0.057 rad2∕s.

We estimate the mean square change in swimming direction
due to hydrodynamic interactions between two bacteria, assum-
ing that the nearest encounter occurs at time t ¼ 0 at a distance r.
We further assume that a bacterium is approximately ellipsoidal
(major axis length a, minor axis length b) and swims at constant
speed V 0. If the unit vector dðtÞ denotes the swimming direction
of a bacterium at time t, the mean square angular change of the
swimming direction during the time interval ½−t∕2;t∕2� is given by

hΔϕðt; rÞ2iH≔harccos½dð−t∕2Þ · dðt∕2Þ�2iH; [S1]

with h·iH indicating an average over all possible orientations and
positions of binary encounters with minimal distance r.

To evaluate the importance of hydrodynamic interactions
relative to random fluctuations, we compare hΔϕðt; rÞ2iH with
angular diffusion due to Brownian motion and intrinsic swimming
variability in three dimensions (3D)

hΔϕðtÞ2iD ¼ 4Dr t: [S2]

We can define an effective hydrodynamic radius rH by means of
the condition

hΔϕðτ; rHÞ2iH ¼ hΔϕðτÞ2iD; [S3]

where τ is the characteristic interaction time scale. For scattering
events with r > rH hydrodynamics becomes practically irrelevant.
As we shall see below, the final result for rH will be very robust
against changes of the interaction time scale and other para-
meters.

To obtain an analytical estimate for hΔϕðτ; rÞ2iH , we note that
the hydrodynamic change of the unit orientation dðtÞ of an ellip-
soidal bacterium is given by (1)

_di ¼
1

2
ϵijkωjdk þ ΓdkEkjðδji − djdiÞ; [S4]

where the overdot indicates the time-derivative, ϵijk is the Levi–
Civita tensor, ωi ¼ ϵijkuk; j is the vorticity of the fluid field uðrÞ
at the position of the bacterium, Eij ¼ ðui; j þ uj; iÞ∕2 is the
rate-of-strain tensor, and Γ ¼ ½ða∕bÞ2 − 1�∕½ða∕bÞ2 þ 1� is a geo-
metry factor (we use a summation convention for equal vector
and tensor indices, and abbreviate partial derivatives as ui; j≔∂ui∕
∂rj). Our experiments show that the flow field uðrÞ generated by a
(second) bacterium with unit orientation vector d0 is approxi-
mately dipolar,

uiðrÞ ¼
A
jrj2 ½3ðr̂ · d

0Þ2 − 1� r̂i; A ¼ ℓF
8πη

; r̂ ¼ r
jrj ; [S5]

yielding

ωi ¼ 6A
ðr̂ · d0Þ
jrj3 ϵijkd0j r̂k; [S6]

Eij ¼
A
jrj3

�
½3ðr̂ · d0Þ2 − 1�δij þ 3ðr̂ · d0Þðd0j r̂i þ d0i r̂jÞ

− ½15ðr̂ · d0Þ2 − 3�r̂i r̂j
�
: [S7]

Assuming the characteristic scattering time τ is sufficiently small,
which is realistic for 3D scattering due to the relatively large
swimming speeds of E. coli, we can approximate

hΔϕðτ;rÞ2iH ≃ τ2hj _dð0Þj2iH
¼ 9ðΓþ 1Þ2 A

2τ2

r6
hðr̂ · d0Þ2ðd · d0Þ2iH:

Assuming that r̂ is uniformly distributed on a sphere, and d
uniformly distributed on a circle in the tangential plane at
radius r, we obtain

hΔϕðτ; rÞ2iH ¼ 3

5
ðΓþ 1Þ2 A

2τ2

r6
: [S8]

Equating this expression with rotational diffusion (see Eq. S3)
yields the effective hydrodynamic horizon

rH ≃
�
3

20
ðΓþ 1Þ2 A

2τ

Dr

�
1∕6

: [S9]

Note that, due to the τ1∕6 dependence, the result is rather insen-
sitive to the particular value used for τ and, similarly, to changes
in the other parameters. Adopting τ ¼ a∕V 0 and inserting experi-
mentally measured values ða;ℓ; F; V ;DrÞ as given in the main
text, we obtain rH ≃ 3.3 μm for E. coli. Eq. S9 can be viewed
as an upper bound, as the dipolar flow model overestimates
juj for r < 6 μm (see Fig. 1D in the main text).

We may thus conclude that (long-range) hydrodynamic inter-
actions will only be of relevance if at least one of the following
conditions is satisfied: (i) Bacterial suspensions are sufficiently
dense; (ii) self-organization and/or external stimuli lead to orien-
tational and positional correlations between nearby bacteria;
(iii) rotational diffusion is strongly suppressed (e.g., through an
increase of viscosity). However, our results imply that under nat-
ural conditions hydrodynamic long-range interactions are washed
out by noise, suggesting that orientational order in dense bacter-
ial suspensions is primarily caused by an interplay of swimming
motility and short-range interactions (steric repulsion, lubrication
effects, flagellar bundling, etc.) (2).

Hydrodynamic Interactions with a Wall. The previous section fo-
cused on the competition between noise and hydrodynamics in
bacterial pairwise scattering. We now perform a similar analysis
for the hydrodynamic interaction between a bacterium and a wall.
Specifically, we are interested in the following two questions
(3, 4):

• Is long-range hydrodynamics relevant for bacterial cell-surface
scattering?

• Can hydrodynamics trap a bacterium near a wall—and, if so,
for how long?
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Long-Range Interaction with a Wall.We again approximate the flow
field around E. coli by a force dipole flow. We denote the position
of the dipole by x, its normalized orientation vector (the bacterial
swimming direction) by d, and the unit normal vector of the solid
boundary by n (pointing into the fluid). Using Blake’s solution (5)
for a Stokeslet near an infinite planar no-slip surface one can
derive explicit expressions for the advective flow u0iðxÞ, the vorti-
city ω0

iðxÞ, and the symmetric rate-of-strain tensor E0
ijðxÞ, which

act on a force dipole near a wall due to the interaction with
its hydrodynamic image (5, 3):

u0jðxÞ ¼
3A
8h2

n
2ðn · dÞdj þ ½ðn · dÞ2 − 1�nj

o
; [S10]

ω0
kðxÞ ¼ −

3A
4h3

ðn · dÞϵkninidn; [S11]

E0
inðxÞ ¼

A
16h3

n
½5ðn · dÞ2 − 1�δin − 6didn − 12ðn · dÞðdinn þ nidnÞ

þ 9½ðn · dÞ2 þ 1�ninn
o
; [S12]

where h≔jðx:nÞj denotes the orthogonal distance to the surface,
assuming that the coordinate origin lies on the surface, and ϵijk is
the Levi–Civita tensor (primes are used to emphasize that the
fields in Eqs. S10–S12 contain only the image contribution; for
clarity of notation, primes were omitted in the corresponding
formulas in main text). Following Pedley and Kessler (1), the
deterministic equations of motion for a dipole swimmer that
moves at constant swimming speed V 0 in the presence of the
wall are given by

_xj ¼ V 0 dj þ u0jðxÞ; [S13]

_dj ¼
1

2
ϵjklω

0
kdl þ ΓdiE0

inðδnj − dndjÞ: [S14]

As before, Γ ¼ ½ða∕bÞ2 − 1�∕½ða∕bÞ2 þ 1� is a geometric factor
for ellipsoidal particles with major axis length a and minor axis
length b. The equations S14 for the orientation change can be
explicitly written as

_dj ¼
3A
8h3

ðn · dÞ
�
1 −

Γ
2
½3ðn · dÞ2 − 1�

�
½ðn · dÞdj − nj�: [S15]

To study whether or not long-range hydrodynamics affects the
dynamics of a bacterium as it swims towards a wall, we numeri-
cally integrated Eqs. S13 and S14 using the experimentally deter-
mined parameters for the E. coli flow field. The results, which are
summarized in Fig. 2 in the main text, show that due to the
high swimming speeds of E. coli, hydrodynamic long-range inter-
actions are not likely to play an important role in interactions
with walls.

Escape from a Wall. An E. coli-like (“pusher”) bacterium oriented
parallel to a no-slip surface experiences a hydrodynamic attrac-
tion towards the surface (3). Orientational noise and swimming
may counteract this attraction. We now estimate the typical time
it takes for E. coli to escape from the wall, using the dipole model
defined by Eqs. S10–S15 to see whether such a model can explain
the experimentally observed long residence times of bacteria
swimming in close proximity to a solid boundary. This model
overestimates the effects of hydrodynamics if bacteria come very
close to the surface, so that the escape time estimates obtained
below should be regarded as approximate upper bounds.

Let us assume that an inelastic collision has led to alignment of
the bacterial swimmer parallel to the wall and that, subsequently,

its orientation changes by means of rotational diffusion. We
denote by θ the angle between the swimmer and the surface (i.e.,
θ ¼ 0 means parallel to the surface). The bacterium will be able
to escape from the surface, if its swimming velocity component
perpendicular to the surface, V 0ðd · nÞ ¼ V 0 sin θ, exceeds the
hydrodynamic attraction from the image, u0 · n. Taking the scalar
product of Eq. S13 with the wall normal n, and setting _x · n to
zero, defines the escape angle θe by

sin θe ¼ Λ½1–3ðsin θeÞ2�; Λ ¼ 3A
8h2V 0

: [S16]

Solving for θe yields

θe ¼ arcsin
�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12Λ2

p

6Λ

�
: [S17]

Using the experimental values A ¼ 31.8 μm3∕s and V 0 ¼
22 μm∕s for E. coli, one finds that Λ < 1 for distances h >
0.74 μm from the wall; intuitively, the larger the distance from
wall the smaller the required escape angle. This suggests that,
typically, the escape angle will be small, θe ≪ 1. In this case,
one can approximate

θe ≃ Λ; [S18]

which becomes quite accurate for E. coli parameters when
h > 1.5 μm. As the dipole model considerably overestimates
the actual flow field close to the surface, we can expect that
generally θe ≪ 1.

To estimate the mean escape time, we next consider Eq. S15
for the hydrodynamic torque. Due to the elongated shape of E.
coli, we can approximate Γ≃ 1, and thus find for the component
perpendicular to the wall

d
dt
sin θ ¼ −

9A
16h3

sin θðcos θÞ4: [S19]

This can be rewritten as

_θ ¼ −
d
dθ

UðθÞ; [S20]

where the effective angular “potential” UðθÞ is given by

UðθÞ ¼ 9A
64h3

½1 − ðcos θÞ4� [S21]

and is normalized such that Uð0Þ ¼ 0. During an inelastic colli-
sion with the wall, the orientation of the bacterium aligns with
the wall, implying that θ < θe. Because θe is typically small, as
discussed above, one can use the harmonic approximation of
the potential in Eq. S21,

UðθÞ≃ θ2

2κ
; κ ¼ 16h3

9A
; [S22]

where κ defines the characteristic time scale for hydrodynamic
realignment in the dipole model.

Eqs. S20 and S21 capture the deterministic torque that acts
on the bacterium due to its hydrodynamic image. To account
for the stochastic effect of rotational diffusion, we may add a
Langevin (6) term to Eq. S20, yielding

_θ ¼ −
d
dθ

UðθÞ þ ð2D�
r Þ1∕2ξðtÞ; [S23]

where D�
r is the rotational diffusion constant close to the surface

in the direction perpendicular to the surface, and ξðtÞ denotes
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Gaussian white noise characterized by hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼
δðt − t0Þ. In general, we expect D�

r to be smaller than the “bare”
diffusion constant Dr measured far from boundaries, due to geo-
metric constraints on the bacterial orientation near a wall.

The Langevin Eq. S23 describes overdamped (angular) Brow-
nian motion in the effective potential UðθÞ. Therefore, the ques-
tion how long a bacterium can be trapped close to a surface
reduces to a Kramers problem (6, 7) for the escape over a poten-
tial barrier ΔU, which in our case is determined by the escape
angle θe,

ΔU ¼ UðθeÞ: [S24]

If the hydrodynamic torque is small, corresponding to a low
barrier ΔU ≪ D�

r , the typical time of escape for a bacterium
with initial condition θð0Þ ¼ 0 is determined by the rotational
diffusion time scale

trðhÞ≃
θ2e
D�

r
: [S25]

Using the harmonic approximation (Eq. S22) with θe ≃ Λ, we
may estimate from the condition ΔU ¼ D�

r the transition height

he ¼
1

2

�
81

16

A3

D�
r V 2

0

�
1∕7

; [S26]

for h > he hydrodynamic effects becomes practically irrelevant.
Inserting our experimentally measured values for A, V 0 and
the rotational diffusion constant far from surfaces Dr , we find

he ¼ 1.7 ×
�
Dr

D�
r

�
1∕7

μm: [S27]

This means that even for a very small rotational diffusion con-
stant Dr� ≪ Dr , the torque exerted by the hydrodynamic image
becomes practically negligible if the bacterium is more than a
body length away from the surface.

For sufficiently high barriers ΔU ≫ D�
r , standard arguments

from transition state theory (6) imply that the mean escape time
becomes modified from the rotational diffusion time tr by an
Arrhenius–Kramers factor, so that in this case approximately

teðhÞ ≈
�
θ2e
D�

r

�
exp

�
ΔU
D�

r

�
: [S28]

To gain some qualitative insight into the possibility of hydrody-
namic trapping close to a surface, we rewrite Eq. S28 in terms of
he from Eq. S26, adopting as before the harmonic approximation
of Eq. S22 with θe ≃ Λ. This leads to

teðhÞ ≈
�
32

9

��
h7e
Ah4

�
exp

��
he
h

�
7
�
; [S29]

which suggests the possibility of a very strong increase of the
escape time due to hydrodynamic effects close to the surface.

In practice, Kramers formulas like Eq. S28 often begin to
work reasonably well if ΔU > 3D�

r . Again using the harmonic
approximation of Eq. S22 with θe ≃ Λ, the condition ΔU ¼ 3D�

r
yields

hK ¼ 1.5 ×
�
Dr

D�
r

�
1∕7

μm: [S30]

For E. coli, this is approximately the distance where the linear
approximation θe ≃ Λ becomes valid, so that the right-hand side
of Eq. S29 can provide useful qualitative insight into the behavior

of the escape time at distances h≃ hK , assuming that the dipole
model still provides a reasonable approximation in this limit.

Using the quadratic expressions for ΔU with θe ≃ Λ, and our
experimentally measured values for E. coli to evaluate the escape
time at a distance h ¼ 1.5 μm from the wall, we find

te ≈ 0.78 ×
�
Dr

D�
r

�
exp

�
1.99 ×

�
Dr

D�
r

��
s; [S31]

which suggests that bacteria can be temporarily trapped for sev-
eral seconds, when they come sufficiently close to the surface.
Note that, while the distance scales he and hK are very robust
to changes in D�

r ∕Dr , the mean escape time te is very sensitive
to variations of this ratio.

In summary, we may conclude that: (i) Hydrodynamics is
practically irrelevant if the bacterium is more than a body length
away from the surface; (ii) hydrodynamic effects could, at least
partially, account for the experimentally observed long escape
times of bacteria, when they swim very close (<2 μm) to a solid
boundary. However, a more detailed understanding of the long
residence times near walls is an important challenge that requires
further studies of near-field interactions between bacteria and
surfaces.

Spectral Decomposition of Bacterial Flow Fields. An expansion of
the flow field uðrÞ in terms of vector spherical harmonics yields
a systematic decomposition of the angular flow structure. We
expect this approach, which is similar to the decomposition of
quantum mechanical wave functions in terms of scalar spherical
harmonics, to be useful in future studies that aim to classify
the fluid flows of different microorganisms, and for comparing
experimental data with theoretical models. After summarizing
basic definitions, we will demonstrate the method first for dipolar
test data and then also for the bacterial flow field measured in
our experiments. The notation adopted in this part follows closely
that of Hill (8).

Coordinates. It is convenient to consider a three-dimensional (3D)
spherical coordinate system

r ∈ ½0;∞Þ; ϑ ∈ ½0;π�; φ ∈ ½0;2πÞ: [S32]

The radial coordinate r is defined relative to the center of the
organism with the Cartesian ẑ-axis pointing along the swimming
direction. The associated infinitesimal volume element takes the
standard form

r2dΩ≔ r2 sin ϑ dϑ dφ; [S33]

and the locally orthonormal basis vectors of the spherical coor-
dinate system fr̂;ϑ̂;φ̂g can be expressed in terms of the Cartesian
unit vectors fx̂;ŷ;ẑg as

r̂ ¼ sin ϑ cosφ x̂þ sin ϑ sinφ ŷþ cosϑ ẑ; [S34]

ϑ̂ ¼ cosϑ cosφ x̂þ cosϑ sinφ ŷ − sin ϑ ẑ; [S35]

φ̂ ¼ − sinφ x̂þ cosφ ŷ: [S36]

Scalar Spherical Harmonics. The vector spherical harmonics dis-
cussed below can be most conveniently expressed in terms of
the scalar spherical harmonics

Y lmðϑ;φÞ ¼
�
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

�
1∕2

PlmðμÞeimφ; [S37]
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where μ≔ cosϑ and

PlmðμÞ ¼ ð−1Þm ð1 − μ2Þm∕2

l!2l
dlþm

dμlþm ðμ2 − 1Þl [S38]

with l ¼ 0;1;2;…; and m ¼ −l; − lþ 1;…;l. The scalar spherical
harmonics of Eq. S37 satisfy the standard orthonormality relationsZ

dΩ Y lmY �
l0m0 ¼ δll0δmm0 : [S39]

Vector spherical harmonics. Following Hill (8), we define vector
spherical harmonics V lmðϑ;φÞ, W lmðϑ;φÞ, X lmðϑ;φÞ by

V lm≔
�
−
�
lþ 1

2lþ 1

�
1∕2

Y lm

�
r̂þ

�
1

½ðlþ 1Þð2lþ 1Þ�1∕2
∂Y lm

∂ϑ

�
ϑ̂

þ
�

1

½ðlþ 1Þð2lþ 1Þ�1∕2
1

sin ϑ
∂Y lm

∂φ

�
φ̂; [S40]

W lm≔
��

l
2lþ 1

�
1∕2

Y lm

�
r̂þ

�
1

½lð2lþ 1Þ�1∕2
∂Y lm

∂ϑ

�
ϑ̂

þ
�

1

½lð2lþ 1Þ�1∕2
1

sin ϑ
∂Y lm

∂φ

�
φ̂; [S41]

X lm≔
�

i
½lðlþ 1Þ�1∕2

1

sin ϑ
∂Y lm

∂φ

�
ϑ̂ þ

�
−

i
½lðlþ 1Þ�1∕2

∂Y lm

∂ϑ

�
φ̂;

[S42]

with the additional convention W00 ¼ X00 ≡ 0. For an arbitrary
scalar function f ðrÞ, we have (8)

∇ · ðfV lmÞ ¼ −
�
lþ 1

2lþ 1

�
1∕2

�
df
dr

þ lþ 2

r
f
�
Y lm; [S43]

∇ · ðfW lmÞ ¼
�

l
2lþ 1

�
1∕2

�
df
dr

−
l − 1

r
f
�
Y lm; [S44]

∇ · ðfX lmÞ≡ 0; [S45]

which implies that the functions X lm are divergence-free

∇ · X lm ≡ 0. [S46]

The vector spherical harmonics from Eqs. S40–S42 fulfill the fol-
lowing orthonormality relations

Z
dΩV lm · V �

l0m0 ¼ δll0δmm0 ; [S47]

Z
dΩW lm · W�

l0m0 ¼ δll0δmm0 ; [S48]

Z
dΩ X lm · X�

l0m0 ¼ δll0δmm0 ; [S49]

Z
dΩV lm · W�

l0m0 ¼ 0; [S50]

Z
dΩV lm · X�

l0m0 ¼ 0; [S51]

Z
dΩW lm · X�

l0m0 ¼ 0. [S52]

Hence, an arbitrary vector field uðr;ϑ;φÞ can be decomposed in
the form

uðr;ϑ;φÞ ¼ ∑
∞

l¼0
∑
l

m¼−l

uVlmðrÞV lm þ∑
∞

l¼1
∑
l

m¼−l

uWlmðrÞW lm

þ∑
∞

l¼1
∑
l

m¼−l

uXlmðrÞX lm; [S53]

where the radial coefficient functions uγlmðrÞ with γ ¼ V;W;X are
given by

uVlmðrÞ≔
Z

dΩ uðr;ϑ;φÞ · V �
lmðϑ;φÞ; [S54]

uWlmðrÞ≔
Z

dΩ uðr;ϑ;φÞ · W�
lmðϑ;φÞ; [S55]

uXlmðrÞ≔
Z

dΩ uðr;ϑ;φÞ · X�
lmðϑ;φÞ: [S56]

If the flow field u is a solution to the incompressible Stokes equa-
tions with pressure field p and viscosity η, which means that

η∇2u ¼ ∇p; ∇ · u≡ 0; [S57]

then the coefficient functions fuγlmðrÞgγ¼V;W;X are coupled
through Eqs. S57 and the specific boundary conditions that
complement these equations.

Extracting Coefficient Functions from 2D Data. Eqs. S53–S56 can be
used to systematically decompose 3D flow field data into contri-
butions from different harmonics. In practice, however, the pre-
sently available imaging data for bacteria and algae (9) is
restricted to the 2D focal plane of the microscope, taken here to
be the ðy ¼ 0Þ-plane in which the organisms swims. To achieve
systematic decomposition in terms of the vector spherical harmo-
nics fV lmðϑ;φÞ;W lmðϑ;φÞ; X lmðϑ;φÞg in this situation, it is neces-
sary to make additional assumptions about the symmetry of the
observed flow fields. For axially symmetric organisms far
from boundaries the surrounding average fluid velocity field
should be cylindrically symmetric with respect to their body axis
ẑ, which means that

uðr;ϑ;φÞ ¼ RzðζÞuðr;ϑ;φþ ζÞ; ∀ðr;ϑ;φ;ζÞ; [S58]

where the matrix

RzðζÞ ¼
cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1

0
@

1
A [S59]

represents the rotation by an angle ζ about the ẑ-axis. In parti-
cular, we have in this case

uðr;ϑ;φÞ ¼ RzðφÞuðr;ϑ;0Þ; [S60]

where uðr;ϑ;0Þ is the field measured in the focal ðy ¼ 0Þ-plane.
Defining

V̄ lmðϑÞ≔
Z

2π

0

dφ RzðφÞV lm; [S61]

W̄ lmðϑÞ≔
Z

2π

0

dφ RzðφÞW lm; [S62]

X̄ lmðϑÞ≔
Z

2π

0

dφ RzðφÞX lm; [S63]
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the expansion coefficients can be written as

uVlmðrÞ ¼
Z

π

0

dϑ sin ϑ uðr;ϑ;0Þ · V̄ �
lm; [S64]

uWlmðrÞ ¼
Z

π

0

dϑ sin ϑ uðr;ϑ;0Þ · W̄�
lm; [S65]

uXlmðrÞ ¼
Z

π

0

dϑ sin ϑ uðr;ϑ;0Þ · X̄�
lm: [S66]

Eqs. S64–S66 require knowledge of all three flow components ux,
uy, uz, in the ðy ¼ 0Þ-plane. In our experiments, we can only mea-
sure the flow components in the focal plane, and we therefore set
uðr;ϑ;0Þ ¼ ðux;0;uzÞ, cf. remarks below.

We next illustrate the spectral decomposition of the angular
flow field structure for both numerically generated test data
and real data from our experiments. To this end, we estimate
the integrals in Eqs. S64–S66 numerically using spatially discrete
flow field data fuðriÞg, specified on semicircles of constant radius
jrij ¼ r, by replacing the integral over ϑ through trapezoidal
Riemann sums with the discretization determined by the angular
resolution of our data. Generally, the finer the angular resolution
Δϑ, the more accurately one can estimate the radial coefficient
functions fuγlmðrÞgγ¼V;W;X . More precisely, we need Nϑ ≫ l,
whereNϑðrÞ is the number of data grid points along the semicircle
of radius r. The results presented below are based on a polar grid
with angular resolution Δϑ ¼ 1°, corresponding to NϑðrÞ ¼ 181.

Test Case: Dipolar Flow Field. Our experiments show that the
flow uðrÞ generated by an E. coli bacterium with unit orientation
vector d is well-approximated by a force dipole flow, with com-
ponents

uiðrÞ ¼
A
jrj2 ½3ðr̂ · dÞ

2 − 1�r̂i; r̂ ¼ r
jrj ; [S67]

and dipole strength A≃ 31.8 μm3∕s. To illustrate the flow field
decomposition by means of vector spherical harmonics, we first
consider test data generated from the ideal force dipole field by
computing the components uiðrÞ at different radii r on a polar
grid with angular spacing Δϑ ¼ 1°. The corresponding flow field
for the swimmer orientation d ¼ ð0;0;1Þ is shown in Fig. S1A.

To verify our decomposition procedure, we can insert the
coefficient functions fuVlmðrÞ;uWlmðrÞ;uXlmðrÞg, as calculated from
Eqs. S64–S66, into the expansion formula (Eq. S53) and compare
the resulting flow field with the original velocity field uðrÞ. The
symbols in Fig. S1 B and C represent the components of the force
dipole flow field at two different radii. The lines indicate the ap-
proximation by vector spherical harmonics, obtained with only a
finite number of basis functions fV l0mðϑ;φÞ;W l0mðϑ;φÞ;X l0mðϑ;φÞg
with 0 ≤ l0 ≤ l. As evident from Fig. S1 B and C, the quality of the
fit to the exact flow data gradually improves the more harmonics
one includes. Generally, we find that for NϑðrÞ ¼ 181 the exact
flow field (Eq. S53) is well-approximated when including spheri-
cal harmonics with l0 ≤ 5, see Fig. S1 B and C.

Experimental Case: Bacterial Flow Field.We now apply an analogous
analysis to the experimentally measured flow field, which is
shown in Fig. S1D. The corresponding results are summarized
in Fig. S1 E and F. By comparing the diagrams in Fig. S1 E
and F with their dipolar counterparts in Fig. S1 B and C, one
readily observes considerable deviations from the dipolar struc-
ture for small distances r ≲ 6 μm, because the anterior-posterior
symmetry is broken by the presence of the flagellar bundle. Gen-
erally, the decomposition in terms of vector spherical harmonics
yields a systematic fitting procedure even at larger distances
from the bacterium, when the experimental data becomes noisier,
as evident from Fig. S1F.

Angular Kinetic Energy Spectra. The coefficient functions fuVlmðrÞ;
uWlmðrÞ;uXlmðrÞg encode the full radial and angular structure of the
bacterial flow field. To obtain a condensed, spectral representa-
tion of the flow field structure, we can integrate the local kinetic
energy juðrÞj2 of the flow field over a surface of constant radius r.
Using the orthonormality of the vector spherical harmonics, one
then finds that the spectral functions

plðrÞ≔ ∑
l

m¼−l

½juVlmðrÞj2 þ juWlmðrÞj2 þ juXlmðrÞj2� [S68]

measure the average kinetic energy generated by the microorgan-
ism at distance r in the angular mode l. The pl-representation is
conceptually similar to the angular power spectrum representa-
tion of the cosmic microwave background radiation (10). Fig. 2
shows the pl-spectra for the dipolar test case and the bacterial
flow field at different radii. One readily observes that the front-
back asymmetry of the E. coli flow field results in an excitation
of higher l-modes that are absent for a pure force dipole field.
Generally, pl-spectra can be useful for identifying and quantifying
similarities and differences in the flow fields of different types
of microorganisms, and for comparing them with theoretical
models.

Remarks.The expansion in Eq. S53 provides a useful tool for ana-
lyzing the angular structure of flow fields around microorganisms
far from boundaries. This opens up the possibility to systemati-
cally categorize and compare the flow fields of different bacterial
and algal species in terms of their angular vector spectra. While
our experimental setup allows us to determine the velocity field
only in the 2D focal plane, advanced future experiments might
eventually be able to resolve the full 3D flow structure. If this
can be achieved, then the additional symmetry assumptions un-
derlying Eqs. S64–S66 can be dropped, and the radial coefficient
functions fuVlmðrÞ;uWlmðrÞ;uXlmðrÞg can be computed directly from
Eqs. S54–S56. In principle, one could further decompose the ra-
dial coefficient functions in terms of a suitably chosen orthonor-
mal basis system on ½0;∞Þ. The choice of the radial basis functions
should be guided by the radial structure of known solutions to the
Stokes equations (11).
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Fig. S1. Decomposition of the angular flow field structure in terms vector spherical harmonics for dipolar test data (A–C) and experimentally measured flow
field of E. coli (D–F) at different radii r. (A) Test data sampled from the force dipole flow field of Eq. S67with amplitudeA ¼ 31.8 μm3∕s in the ðy ¼ 0Þ-plane. The
swimmer is located at the origin and swims in the positive z-direction d ¼ ð0;0;1Þ. Colors encode the flow field magnitude; arrows indicate local flow directions.
(B and C) Angular flow profile at constant distance r from the swimmer, where the angle ϑ is measured clockwise with respect to the positive z-axis (see A),
including basis functions with 0 ≤ l ≤ 5. The fit (lines) to the sampled test data (symbols) improves when higher harmonics (i.e., higher values of l) are included.
(D) Experimentally measured flow field in the ðy ¼ 0Þ-plane far from surfaces. The bacterium is located at the origin and swims in the positive z-direction. Colors
encode flow field magnitude; arrows indicate local flow directions. (E) Angular flow profile at constant distance r from the bacterium. The fit to the
experimental data (symbols) improves again when higher harmonics are included. By comparing with B, we observe a broken anterior-posterior symmetry
at short-to-intermediate distances due the presence of the flagellar bundle. (F) At larger distances the experimental data becomes noisier; nevertheless the
decomposition in terms of vector spherical harmonics yields a systematic fitting procedure.

Fig. S2. Angular kinetic energy spectra for (A) the dipolar test model with amplitude A ¼ 31.8 μm3∕s, and (B) the experimentally determined flow field data
for E. coli. The front-back asymmetry of the E. coli flow field results in an excitation of higher l-modes.
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